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What are Knowledge Representation Schemes ? 
 

In Al, there are four basic categories of representational schemes: logical, 

procedural, network and structured representation  schemes. 

1) Logical representation uses expressions in formal logic to represent its 

knowledge base. Predicate Calculus is the most widely used 

representation scheme. 

2) Procedural representation represents knowledge as a set of instructions for 

solving a problem. These are usually if-then rules we use in rule-based systems. 

3) Network representation captures knowledge as a graph in which the nodes 

represent objects or concepts in the problem domain and the arcs -represent relations or 

associations between them. 

4) Structured representation extends network representation schemes by allowing each 

node to have complex data structures named slots with attached values. 

We will focus on logic representation schemes in this chapter. 

 

 

2.1 The Propositional Calculus 

2.1.1 Symbols and Sentences 

The prepositional calculus and, in the next subsection, the predicate 

calculus are first of all languages. Using their words, phrases, and sentences, we 

can represent and reason about properties and relationships in the world. The 

first step in describing a language is to introduce the pieces that make it up: ils set 

of symbols. 

DEFINTION 

 
PROPOSITIONAL CALCULUS SYMBOLS 

 
The symbols of prepositional Calculus are, the prepositional symbols: 

P.   Q.   R,S,T.... 

truth symbols 



true, false 

 
and connectives: 

 
K,V, €, ‹, = 

 
Prepositional symbols denote propositions of statements about the world that 

may be either true or raise, such as "the car is red" or "water is wet." 

Propositions are denoted by uppercase letters near the end of the English 

alphabet. Sentences in the propoEitional calculus are formed from these atomic 

symbols according to the following rules : 

DEFINITION 

 
PROPOSIONAL CALCULUS SENTENCES 

 
Every prepositional symbol and truth symbol is a sentence. 

 
For example: true, P, Q, and R are sentences. 

 
The negation of a sentence is a sentence 

 
for example: ¬P and ¬false are sentences 

The conjunction or and two sentences : is a sentence 

For example: P K¬P is a sentence. 

 
The disjunction or of two sentences is a sentence. 

 
For example P K¬P. is a sentence, 

 
The implication of  one sentence for another is a sentence. 

 
For example P ‹Q» is sentence. 

 
The equivalence of two sentences Is a sentence. 

 
For example: P v Q = R is a sentence. 



Legal sentences are also called well-formed formulas 01 WFFs. 
 

IN expressions of the form P K Q. P and Q are called the conjuncts In P V Q and 

Q are referred to as disjuncts in an implication P ‹ Q, P is the premise or antecedent 

and Q, the conclusion or consequent . 

In propositional calculus sentences. the symbols( ) and [ ] are used to group 

symbols into subexpressions and so control their order of evaluation and meaning . for 

example (P K Q )=R is quit different from P V (Q=R), as can be 

demonstrated using truth tables ( section 2.1.2). 

An expression is a sentence, or well-formed formula, of the prepositional calculus 

if and only if it can be formed of legal symbols through some sequence of these rules . For 

example . 

P K Q ‹R = ¬P v ¬ QvR 

is a well-formed sentence in the in the propositions calculus because: 

P, Q, and R are-proposition and .thus sentences. 

P K Q, the conjunction of two sentences, is a sentence. 

(P K Q) ‹ R, the implication of a sentence for another, is a sentence. 

¬P and ¬Q, the negations of sentences, are sentences. 

¬P v ¬Q, the disjunction of two sentences, is a sentence. 

¬P v ¬ Q v R, the disjunction of two sentences, is a sentence. 

((P KQ) ‹R)= ¬ P v ¬ Q v R, the equivalence of two sentences, is a sentence. 

This is our original sentence, which has been Constructed through a series of applications of 

legal roles and is therefore well formed. 

DEFINITION 

PROPOSITIONAL CALCULUS SEMANTICS 

An interpretation of a set of propositional is the assignment of a truth 

value , either T or F , to each propositional symbol . 

The symbol true is always assigned T, and the symbol false is assigned F . 



The interpretation or truth value for sentence is determined by: 
 

The truth assignment of negation , ¬ P, where P is any propositional 

symbol , is F if the assignment to P is T , and T if the assignment to P 

is F 

The truth assignment of conjunction K, is T only when both conjuncts 

have truth value T; otherwise it is F. 
 

The truth assignment of disjunction, v is F only when both disjuncts have 

truth value F; otherwise it is T. 
 

The truth assignment of implication , ‹ is F only when the premise or 

symbol before the implication is T and the truth value of the consequent or 

symbol after the implication is F; otherwise it is T . 
 

The truth assignment of equivalence , = is T only when both 

expresslone have the same assignment for all possible interpretation 

otherwise it is F . 
 

P Q PKQ 

 

Figure 2.1 truth table for the operator K 
 
 

 

P Q ¬P ¬pvQ P‹Q (¬pvQ)=( P‹Q) 
 

T. T F T T T 

T F F F F T 

F T T T T T 

F F T T T T 

 

 

Figure 2.2 Truth table demonstrating the equivalence of ( P‹Q) and 

(¬pvQ) 



 

By demonstrating that they have identical truth tables, we can prove the following prepositional calculus 

equivalences. For prepositional expressions P, Q, and R; 

 

 
¬ (¬P) = P 

(P v Q)=( ¬P  ‹Q) 

The contra positive law : (P‹Q)=( ¬Q‹¬P) 

De morgan's law : ¬ (P v Q)=( ¬P K ¬Q) and (P KQ)=( ¬P v ¬Q) 

The commutative laws : (P K Q)=( Q K P) and ( P v Q ) = ( Q v P ) 

Associative law : (( P K Q) K R) = ( P K (Q K R)) 

Associative law : (( P v Q) v R) = ( P v (Q v R)) 

Distributive law : P v (Q K R) = ( P v Q) K (P v R) 

Distributive law : P K (Q v R) = ( P K Q) v (P K R) 

 

2.2 The Predicate Calculus 
 

In prepositional calculus, each atomic symbol (P, Q, etc.) denotes a proposition of some complexity. 

There is no way to access the components of an individual assertion. Predicate calculus provides this ability. 

For example, instead pf letting a single prepositional symbol, P, denote :1he entire sentence "it rained on 

Tuesday," we can create a predicate weather that describes a relationship between a date and the weather. 

weather (Tuesday, rain) through inference rules we can manipulate predicate calculus expression accessing 

their individual components and inferring new sentences. 

Predicate calculus also allows expressions^ contain variables. Variables let us create general 

assertions about classes of entities. For example, we could state that for :all values, of X, where X is a day of 

the week , the statement weather ( X, rain ) is true ; I,e., it rains it rains everyday. As with propositional 

calculus, we will first define the syntax of the language and then discuss its semantics. 



Examples of English sentences represented in predicate calculus: 
 

1- If it doesn't rain tomorrow, Tom will go to the mountains. 

¬ weather (rain, tomorrow)  ‹go(tom, mountains). 

 
2- Emma is a Doberman pinscher and a good dog. Good dog 

(emma)  K  isa (emma, Doberman ) 

3. All basketball players are tall. 

 
6  X (basketball _ player(X)  ‹tall (X)) 

4- Some people like anchovies. 

E  X (person(X) K  likes(X, anchovies)), 

 
5- If wishes were horses, beggars would ride. equal(wishes, 

horses)  ‹ride(beggars). 

6- Nobody likes taxes 

 
¬ E  X likes(X,taxes). 



3-1 What is Resolution? 
 

Resolution is a technique for theorem. proving in propositional and 

predicate calculus which attempts to show that the negation of the 

statement produces a contradiction with the known statements. 

In the following expression, uppercase letters indicate variables 

(W,X,Y,andZ); lowercase letters in the middle of the alphabet 

indicate Constants or bound variables (I, m, and n); and early 

alphabetic lowercase letters indicate the predicate names (a, b, c, d, 

and e). To improve readability of the expressions, we use two types of 

brackets: ( ) and [ ]. Where possible in the derivation, we remove 

redundant brackets: The expression we will reduce to clause form is: 

 

(i)(6X)([a(X) K b(X)] ‹ [c(X, I) K (EY)(EZ)[c(Y, Z)] ‹ d(X, Y))]) V (6X)(e(X)) 
 

1. First we eliminate the by using: a → b ≡ ¬ a v b. This transformation 

reduces the expression in (i) above: 

 

(ii)(6X)(¬ [ a(X) K b(X)]$[c(X, I) K (EY)(¬(EZ)[c(Y, Z)$d(X, Y))]$ ‹ d(X, Y))]) V (6X)(e(X)) 
 
 
 

2. Next we reduce the scope of negation."This may be accomplished 

using a number of the transformations that includes: 

¬(¬a) ÷ a  

¬(EX)a(X) ÷ (6X)¬a(X) 

¬(6X)b(X) ÷ (EX)¬b(X) 

¬(a$b) ÷ ¬a$¬b 

¬(a$b) ÷ ¬a$¬b 
 

Using the second and fourth equivalences (ii) becomes: 

 
(iii)(6X) (¬ [ a(X)$b(X)]$ [c(X, I) K (EY)((6Z)[¬c(Y, Z)$d(X, Y]))] $(6X)(e(X)) 



3. Next we standardize by renaming all variables so that variables bound 

by different quantifiers have unique names. Because variable names 

are "dummies" or "place holders," the particular name chosen for a 

variable does not affect either the truth value or the generality of the 

clause. Transformations used at this step are of the form: 

((6X)a(X) v (6X)b(X≡(6X)a(X) v (y)b(y) 

Because {iii)bas two instances of the variable X, we rename: 

 

(ir)(6X)(¬  a(X)$¬b(X)]$[c(X, I) K (EY)((6Z)[¬c(Y, Z)$d(X, Y))]$d(X, Y))]) V (6W)(e(W)) 
 

 
4. Move all quantifiers to the left without changing their order. This is 

possible. because step 3 has removed the possibility of any conflict 

between variable names. (iv) now becomes: 

 
(r)(6X)(EY)(6Z)(6W)(¬  a(X)$¬b(X)]$[c(X, I) K ([¬c(Y, Z)$d(X, Y))]$ e(W))] 

 
 

After step 4 the clause is said to be in prenex normal form, because all 

the quantifiers are in front as a prefix and the expression or matrix 

follows after. 

5. At this point all existential quantifiers are eliminated by a process called 

skolemization. Expression (v) has an existential quantifier for Y. 

When an expression contains an existentially quantified variable, for 

example, ( E Z)(foo(...Z,...)), it may be concluded that there is an 

assignment to Z under which foo is true. Skolemization identifies such a 

value. Skolemization does not necessarily show how to produce such a 

value; It is only a method for giving a name to an assignment that must 

exist. If k represents that assignment, then we have foo(….K….). 

Thus: 

 
(6X)(dog(X)may be replaced by dog (fido) 

 
 

 
where the name fido is picked from the domain of definition of X to 



represent that individual X. fido is called a skolem constant. If the 

prediCate has more than one argument and the existentially quantified 

variable is within the scope of universally quantified variables, the 

existential variable must be a function of those other variables. This is 

represented in the skolemizatlon process: 

(6X)(EY)(mother(X,  Y)) 

This expression indicates that every person has' a mother. Every person is 

an X and the existing mother will be a function of the particular person X 

that is picked. Thus skolemization gives: 

(6X)mother(X, m(X)) 

which indicates that each X has a mother (the m of that X). In another 

example: 

 
Is skolemized to: 

(6X)(6Y)(EZ)(6W)(foo(X,  Y,  Z, W)) 
 

(6X)(6Y)(6W)(foo(X,  Y),  W)) 
 

 

We note that the existentially quantified Z was. Within the scope (to the 

right of) universally quantified X and Y Thus the skolemassignment is a 

function of X and Y but not of W. With skolemization (v) becomes: 

 
(ri)(6X)(6Z)(6W)([¬a(X)$¬b(X)]$[c(X,I)$([     ¬c(f(X),Z)]$d(X,f(X)))])$e(W)) 

 

 

where f is the skolem function of X that replaces the existential Y. Once 

the skolemization has occurred, step 6 can take place, which simply 

drops the prefix. 

6. Drop all universal quantification. By this point only universally 

quantified variables exist (step 5) with no variable conflicts (step 3). 

Thus all<quantifiers can be dropped, and any proof procedure employed 

assumes all variables are universally quantified. 

Formula (vi) now becomes: 



(rii)[¬a(X)$¬b(X)]$[c(X, I)$(¬c(f(X), Z)$d(X, f(X)))]$e(W) 
 

7. Next we convert the expression to the conjunct of disjuncts form. This 

requires using the associative and distributive properties of A and v. 

Recall that 

a$(b$c) = (a$b)$c 

a$(b$c) = (a$b)$c 

 

which indicates that $ or $ may be grouped in any desired fashion. The 

distributive property is also used, when necessary. Because 

a$(b$c) 

is already in clause form, A is not distributed However, $ must be 

distributed across $ using: 

a$(b$c) = (a$b)$(a$c) 
 

The final form of (vii) is: 

(riii)[¬a(X)$¬b(X)$c(X, I)$e(W)$[¬a(X)$¬b(X)$¬c(f(X), Z)$d(X, f(X))$e(W)] 
 
 
8. Now call each conjunct a separate clause. In the example (viii) above 

there are two clauses: 

(ixa)[¬a(X) V c(X, I) V e(W)] K  

(ixb)[¬a(X) V ¬b(X) V c(f(X), Z) V d(X, f(X)) V    e(W)] 

9. The final step is to standardize the variables apart again. This requires 

giving. The variable in each clause generated by step 8 different names. 

This procedure arises from the following equivalence: 

(6X)(a(X) K b(X)) ÷ (6X)a(X) K (6Y)b(Y) 

Which follows from the nature of variable names as place holders. (ixa) 

and (ixb) now become, using new-variable names U and V: 

(xa)[¬a(X) V ¬b(X) V c(X, I) V e(W)]  K 

(xa)[¬a(U) V ¬b(U) V ¬c(f(U), Z) V d(U, f(U))V e(V)] 
 

Ex (3): As a final example, suppose: 



...... 

"All people who are not poor and are smart are hippy. Those people who' 
read are not stupid. John can read are is wealthy. Happy people have 
exciting lives. Can anyone be found with an exciting life?" 

a) First change the sentences to predicate form: 

We assume 6X (smart (X) ≡ stupid (X) and 6Y (wealthy (Y) ≡ poor (Y)), 

and get: 

6X(¬Poor (X)K smart (X) ‹ happy(X)) 
 

6Y(read(Y) ‹ smart (Y)) 

read (john)K ¬  poor (john) 

6Z (happy (Z) ‹ exciting (Z) 

The negation of the conclusion is: 

¬EW (exciting (W)) 

b) These predicate calculus expressions for the happy life problem are 

transformed into the following clauses: 

poor (X) V  ¬ smart (X) V  happy (X) 

¬ read (Y)  V smart(Y) 

read (john) 

¬ poor (john) 

¬ happy (Z) V exciting (Z) 

¬ exciting (W) 

The resolution refutation for this example is found in Figure (3-4). 



 

 

¬ exciting(W) ¬ happy(Z) ) V    exciting (Z) 

¬ happy (Z) poor (X) V  ¬ smart (X) V  happy (X) 
 

 

poor (X)  V  ¬ smart (X) ¬ read (Y)  V smart(Y) 

¬ poor(john) poor(Y) ¬ read (Y) 

 

¬read(john) read (john) 
 

( 

 

 

 

 

Figure (3-4):Resolution prove for the "exciting life" problem . 

(john/Y) 

(Z/W) 

(X/Z) 

(Y/X) 

) 



1 ‐Intelligent Search Methods and Strategies 
 

Search is inherent to the problem and methods of artificial 

intelligence (AI). This is because AI problems are intrinsically complex. 

Efforts to solve problems with computers which human can routinely 

innate cognitive abilities, pattern recognition, perception and 

experience, invariably must turn to considerations of search. All search 

methods essentially fall into one of two categories, exhaustive (blind) 

methods and heuristic or informed methods. 

2 ‐State Space Search 
 

The state space search is a collection of several states with 

appropriate connections (links) between them. Any problem can be 

represented as such space search to be solved by applying some rules 

with technical strategy according to suitable intelligent search algorithm. 

What we have just said, in order to provide a formal description of a 

problem, we must do the following: 

1‐  Define a state space that contains all the possible configurations  

of the relevant objects (and perhaps some impossible ones). It is, 

of course, possible to define this space without explicitly 

enumerating all of the states it contains. 

2‐ Specify one or more states within that space that  describe  

possible situations from which the problem‐solving process may 

start. These states are called the initial states. 

3‐ Specify one or more states that would be acceptable as solutions 

to the problem. These states are called goal states. 



4‐ Specify a set of rules that describe the actions (operators) 

available. Doing this will require giving thought to the following 

issues: 

 What unstated assumptions are present in the informal 

problem description?

 How general should the rules be?

 How much of the work required to solve the problem  

should be precomputed and represented in the rules?

The problem can then be solved by using rules, in combination 

with an appropriate control strategy, to move through the problem  

space until a path from an initial state to a goal state is found. Thus the 

process of search is fundamental to the problem‐solving process. The 

fact that search provides the basis for the process of problem solving 

does not, however, mean that other, more direct approaches cannot  

also be exploited. Whenever possible, they can be included as steps in 

the search by encoding them rules. Of course, for complex problems, 

more sophisticated computations will be needed. Search is a general 

mechanism that can be used when no more direct methods is known. At 

the same time, it provide the framework into which more direct 

methods for solving subparts of a problem can be embedded. 

To successfully design and implement search algorithms, a programmer 

must be able to analyze and predict their behavior. Questions that need 

to be answered include: 

 Is the problem solver guaranteed to find a solution? 

 Will the problem solver always terminate, or can it become caught 

in an infinite loop? 



 When a solution is found, is it guaranteed to be optimal? 

 What is the complexity of the search process in terms of time 

usage? Memory usage? 

 How can the interpreter most effectively reduce search 

complexity? 

 How can an interpreter be designed to most effectively utilize a 

representation language? 

To get a suitable answer for these questions search can be structured 

into three parts. A first part presents a set of definitions and concepts 

that lay the foundations for the search procedure into which induction is 

mapped. The second part presents an alternative approaches that have 

been taken to induction as a search procedure and finally the third part 

present the version space as a general methodology to implement 

induction as a search procedure. If the search procedure contains the 

principles of the above three requirement parts, then the search 

algorithm can give a guarantee to get an optimal solution for the current 

problem. 

3 ‐General Problem Solving Approaches 
 

There exist quite a large number of problem solving techniques in 

AI that rely on search. The simplest among them is the  generate‐and‐

test method. The algorithm for the generate‐and‐test method can be 

fom1ally stated in the figure (1) follow. 

It is clear from the above algorithm that the algorithm continues the 

possibility of exploring a new state in each iteration of the repeat‐until 

loop and exits only when the current state is equal to the goal. Most 



important part in the algorithm is to generate a new state. This is not an 

easy task. 

 

Figure (1) Generate and Test Algorithm 

 
If generation of new states is not feasible, the algorithm should be 

terminated. In our simple algorithm, we, however, did not include this 

intentionally to keep it simplified. But how does one generate the states 

of a problem? To formalize this, we define a four tuple, called state 

space, denoted by 

{nodes, arc, goal, current }, 

 
where 

 
nodes represent the set of existing states in the search space; 

 
an arc denotes an operator applied to an existing state to cause 

transition to another state; goal denotes the desired state to be 

identified in the nodes; and current represents the state, now generated 

for matching with the goal. The state space for most of the search 

problems takes the form of a tree or a graph. Graph may contain more 

Procedure Generate & Test 

Begin 

Repeat 

 
Generate a new state and call it current‐state; 

Until current‐state = Goal; 

End. 



than one path between two distinct nodes, while for a tree it has 

maximum value of one. 

To build a system to solve a particular problem, we need to do four 

things: 

1. Define the problem precisely. This definition must include precise 

specifications of what the initial situation(s) will be as well as  

what final situations constitute acceptable solutions to the 

problem. 

2. Analyze the problem. A few very important features can have an 

immense impact on the appropriateness of various possible 

techniques for solving the problem. 

3. Isolate and represent the task knowledge that is necessary to 

solve the problem. 

4. Choose the best problem‐solving technique(s) and apply it (them) 

to the particular problem. 

Measuring problem‐solving performance is an essential matter in 

term of any problem solving approach. The output of a problem‐solving 

algorithm is either failure or a solution. (Some algorithm might get stuck 

in an infinite loop and never return an output.) We will evaluate an 

algorithm's performance in four ways: 

 Completeness: Is the algorithm guaranteed to find a 

solution when there is one?

 Optimality: Does the strategy find the optimal solution?

 Time complexity: How long does it take to find a solution?1

 Space complexity: How much memory is needed to perform 

the search?



4 ‐ Search Technique 
 

Having formulated some problems, we now need to solve them. 

This is done by a search through the state space. The root of the search 

tree is a search node corresponding to the initial state. The first step is to 

test whether this is a goal state. Because this is not a goal state, we need 

to consider some other states. This is done by expanding the current 

state; that is, applying the successor function to the current state, 

thereby generating a new set of states. Now we must choose which of 

these possibilities to consider further. We continue choosing, testing and 

expanding either a solution is found or there are no more states to be 

expanded. The choice of which state to expand is determined by the 

search strategy. It is important to distinguish between the state space 

and the search tree. For the route finding problem, there are only N 

states in the state space, one for each city. But there are an infinite 

number of nodes. 

There are many ways to represent nodes, but we will assume that a node is 

a data structure with five components: 

 STATE: the state in the state space to which the node corresponds؛

 PARENT-NODE: the node in the search tree that generated this 

node؛

 ACTION: the action that was applied to the parent to generate the 

node؛

 PATH‐COST: the cost, traditionally denoted by g(n), of the path 

from the initial state to the node, as indicated by the parent 

pointers; and

 DEPTH: the number of steps along the path from the initial state.



As usual, we differentiate between two main families of search 

strategies: systematic search and local search. Systematic search visits 

each state that could be a solution, or skips only states that are shown to 

be dominated by others, so it is always able to find an optimal solution. 

Local search does not guarantee this behavior. When it terminates, after 

having exhausted resources (such as time available or a limit number of 

iterations), it reports the best solution found so far, but there is no 

guarantee that it is an optimal solution. To prove optimality, systematic 

algorithms are required, at the extra cost of longer running times with 

respect to local search. Systematic search algorithms often scale worse 

with problem size than local search algorithms. 

5 ‐ Search Technique Types 
 

Usually types of intelligent search are classified into three classes; 

blind, heuristic and random search. Blind search is a technique to find 

the goal without any additional information that help to infer the goal, 

with this type there is no any consideration with process time or  

memory capacity. In the other side the heuristic search always has an 

evaluating function called heuristic function which guides and controls 

the behavior of the search algorithm to reach the goal with minimum 

cost, time and memory space. While random search is a special type of 

search in which it begins with the initial population that is generated 

randomly and the search algorithm will be the responsible  for  

generating the new population bases on some operations according to a 

special type function called fitness function. The following sections have 

details of each type of search with simple examples. 



5.1 Blind Search 

 
There many search strategies that come under the heading  of 

blind search (also called uniformed search). The term means that they 

have no additional information about states beyond that provided in the 

problem definition. All they can do is generate successors and  

distinguish a goal state from a nongoal state. 

Thus blind search strategies have not any previous information 

about the goal nor the simple paths lead to it. However blind search is 

not bad, since more problems or applications need it to be solved; in 

other words there are some problems give good solutions if they are 

solved by using depth or breadth first search. 

Breadth first search is a simple strategy in which the root node is 

expanded first, then all the successors of the root node are expanded 

next, then their successors, and so on. In general all the nodes are 

expanded at a given depth in the search tree before any nodes at the 

next level are expanded. Breadth first search can be implemented by 

calling TREE‐SEARCH with any empty fringe that is a first‐in‐first‐out 

(FIFO) queue, assuring that the nodes that are visited first will be 

expanded first. In other words, calling TREE‐SEARCH (problem, FIFO‐

QUEUE) result in a breadth first search. The FIFO queue puts all newly 

generated successors at the end of the queue, which means that shallow 

nodes are expanded before deeper nodes. 

Depth first search always expands the deepest node in the current 

fringe of the search tree. The search proceeds immediately to the 

deepest level of the search tree, where the nodes have no successors. As 



those nodes are expanded, they are dropped from the fringe, so then  

the search “backs up” to the next shallowest node that still has 

unexplored successors. This strategy can be implemented by TREE‐

SEARCH with a last‐in first‐out (LIFO) queue, also known as a stack. As an 

alternative to the TREE‐SEARCH implementation, it is common to 

implement depth‐first search with a recursive function that calls itself on 

each of its children in turn. 
 

 

Figure (2) Blind Search Tree 
 
 

 
The paths from the initial state (A) to the goal state (H) are: 

Using Breadth first search A€ B€ C€ D€ E€ F € G € H 

Using Depth first search  A€ B€ D€ G € E€H 

Initial state  

  

   

   

Goal state 



5.2 Heuristic Search 

 
Classically heuristics means rule of thumb. In heuristic search, we 

generally use one or more heuristic functions to determine the better 

candidate states among a set of legal states that could be generated 

from a known state. The heuristic function, in other words, measures  

the fitness of the candidate states. The better the selection of the states, 

the fewer will be the number of intermediate states for reaching the 

goal. However; the most difficult task in heuristic search problems is the 

selection of the heuristic functions. One has to select them intuitively, so 

that in most cases hopefully it would be able to prune the search space 

correctly. 

The search processes that will be described in this chapter build on 

the fact that the search does not proceed uniformly outward from the 

start node: instead, it proceeds preferentially through nodes that 

heuristic, problem‐specific information indicates might be on the best 

path to a goal. We call such processes best‐first or heuristic search. Here 

is the basic idea. 

1. We assume that we have a heuristic (evaluation) function, f. to 

help decide which node is the best one to expand next. This 

function is based on information specific to the problem domain.  

It is real‐valued function of state descriptions. 

2. Expand next that node, n, having the smallest value of f(n). 

Resolve ties arbitrarily. 

3. Terminate when the node to be expanded next is a goal node. 

A function which applies such an algorithm to nodes and assigns a 

value  to  them  accordingly  is  a  heuristic  function.  Determining   good 



heuristics is very often the most difficult element involved in solving 

complex problems in the symbolic artificial intelligence tradition. 

Therefore, heuristic can be defined as “the study of the methods and 

rules of discovery and invention”. 

AI problems solvers employ heuristics in two basic situations: 

 
1. A problem may not have an exact solution because of inherent 

ambiguities in the problem statement or available data. A given 

set of symptoms may have several possible causes. 

2. A problem may have an exact solution, but the computational cost 

of finding it may be prohibitive. In many problems state space 

growth is combinatorially explosive, with the number of possible 

states increasing exponentially or factorially with the depth of the 

search. 

In order to solve many hard problems efficiently, it is often necessary 

to compromise the requirements of mobility and systematicity and to 

construct a control structure that is no longer guaranteed to find the 

best answer but that will almost always find a very answer. Thus we 

introduce the idea of a heuristic. A heuristic is a technique that improves 

the efficiency of a search process, possibly by sacrificing claims of 

completeness. Heuristics are like tour guides. They are good to the 

extent that they point in generally interesting directions; they are bad to 

the extent that they may miss points of interest to particular individuals. 

Some heuristics help to guide a search process without sacrificing any 

claims to completeness that the process might previously have had. 

Others  (in  fact,  many  of  the  best  ones)  may  occasionally  cause    an 



excellent path to be overlooked. But, on the average, they improve the 

quality of the paths that are explored. Using good heuristics, we can 

hope to get good (though possibly nonoptimal) solutions to hard 

problems, such as the traveling salesman, in less than exponential time. 

There are some good general‐purpose heuristics that are useful in a  

wide variety of problem domains. In addition, it is possible to construct 

special‐purpose heuristics that exploit domain‐specific knowledge to 

solve particular problems. 

Performance of the search can be drastically improved by using 

specific knowledge about a search problem to guide the decisions made 

where to search. This knowledge can be presented in the form of 

heuristics – rules that guide the decision‐making during the search. This 

gives us another class of heuristic search algorithms. It is quite obvious 

that heuristics will depend very much on the class of solvable problems. 

The heuristic rules class is considered one of the more important and 

complex way to guide the search procedure in which to reach the 

solution (goal state) such class usually used in embedded system so to 

form what today known as searching with heuristic embedded in rules. 

The search for plans is guided by heuristics that provide an estimate 

of the cost (heuristic value) that are extracted automatically from the 

problem encoding P. In order to simplify the definition of some of the 

heuristics, we introduce in some cases a new dummy End action with 

zero cost, whose preconditions G1, . . . , Gn are the goals of the problem, 

and whose effect is a dummy atom G. In such cases, we will obtain the 

heuristic estimate h(s) of the cost from state s to the goal, from the 

estimate h(G; s) of achieving the ’dummy’ atom G from s. In the   section 



3.7 a detail description about the heuristic search algorithms with simple 

examples. 

5.3 Random Search 

 
Random Search is a method of searching with no planned 

structure or memory. This method has the same intent of the typical 

intuitive search, but the opposite strategy to achieve it. A random 

technique may be preferred if it takes more time to devise a better 

technique, or the additional work involved is negligible. 

Random Search (RS) is a population‐based search algorithm. It is 

first proposed by Price and also called Price's algorithm. RS first  

randomly generates a population of samples from the parameter space, 

and then uses downhill simplex method to move the population towards 

the global optima. Suppose a n‐dimensional objective function is to be 

optimized, the basic RS algorithm can be described as follows: 

1. Randomly generate a population of m points from the parameter 

space. 

2. Randomly select n+1 points from the population and make a 

downhill simplex move. 

3. If the new sample is better than the worst member in the 

population, then the worst member is replaced with this new 

sample. 

4. Repeat the above process until a certain stopping criterion is 

satisfied. 

In RS, random sampling is used for exploration and downhill simplex for 

exploitation.  Its  balance  strategy  first  executes  exploration  and  then 



switches completely to exploitation. Since exploration is only performed 

in the beginning of the search, the convergence to the global optima is 

not guaranteed. The problem of getting trapped in a local extreme can 

be alleviated by using a large population or introducing new members 

into the population with random sampling during the search. Despite of 

this disadvantage, RS has proved to be very effective in practice and is 

widely used. In addition, since there is no local search method involved, 

RS is more robust to noise in the objective function. Besides it’s failing to 

provide the convergence guarantee, another disadvantage is its low 

efficiency. Especially in the beginning, the population is composed of 

random samples 

and RS essentially performs like a pure random sampling. Therefore, for 

many situations in practice where it is desired to obtain a good solution 

quickly, RS may not be able to fulfill the objective. 

To make sure that RS being with suitable solutions the algorithm 

must be evolved to decide the following features: 

High efficiency is required for the desired search algorithm. More 

specifically, the emphasis of the search algorithm should be on finding a 

better operating point within the limited time frame instead of seeking 

the strictly global optimum. 

High dimension is another feature in solve problems. High‐dimensional 

optimization problems are usually much more difficult to solve than low‐

dimensional problems because of “curse of dimensionality”. 



6 ‐Heuristic Search Algorithms 
 

In this section, we can saw that many of the problems that fall 

within the purview of artificial intelligence are too complex to be solved 

by direct techniques; rather they must be attacked by appropriate  

search methods armed with whatever direct techniques are available to 

guide the search. These methods are all varieties of heuristic search. 

They can be described independently any particular task or problem 

domain. But when applied to Particular problems, their efficacy is highly 

dependent on the way they exploit domain‐specific knowledge since in 

and of themselves they are unable to overcome the combinatorial 

explosion to which search processes are so vulnerable. For this reason, 

these techniques are often called weak methods. Although a realization 

of the limited effectiveness of these weak methods to solve hard 

problems by themselves has been an important result that emerged 

from the last decades of AI research, these techniques continue to 

provide the framework into which domain‐specific knowledge can be 

placed, either by hand or as a result of automatic learning. 

Hill climbing is a variant of generate‐and‐test in which feedback from  

the test procedure is used to help the generator decide which direction 

to move in the search space. In a pure generate‐and‐test procedure, the 

test function responds with only a yes or no. but if the test function is 

augmented with a heuristic function that provide an estimate of how 

close a given is to a goal state. This is particularly nice because often the 

computation of the heuristic function can be done at almost no cost at 

the same time that the test for a solution is being performed. Hill 

climbing is often used when a good heuristic function is available for 



evaluating states but when no other useful knowledge is available. For 

example, suppose you are in an unfamiliar city without a map and you 

want to get downtown. You simply aim for the tall buildings. The 

heuristic function is just distance between the current location and the 

location of the tall buildings and the desirable states are those in which 

this distance is minimized. 

Now let us discuss a new heuristic method called best first search, which 

is a way of combining the advantages of both depth‐first and breadth‐

first search into a single method. 

The actual operation of the algorithm is very simple. It proceeds in steps, 

expanding one node at each step, until it generates a node that 

corresponds to a goal state. At each step, it picks the most promising of 

the nodes that have so far been generated but not expanded. It 

generates the successors of the chosen node, applies the heuristic 

function to them, and adds them to the list of open nodes, after 

checking to see if any of them have been generated before. By doing this 

check, we can guarantee that each node only appears once in the graph, 

although many nodes may point to it as a successors. Then the next step 

begins. 

The figure (3) bellow illustrates the hill climbing steps algorithm as it 

described in tree data structure. 

Also the figure (4) bellow shows the steps of the best first search 

algorithm on a given tree as an assumption search space. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) Hill Climbing Search Tree 

 

 

 
 

 
 
 
 
 

 

 
 
 

 

 
 
 
 
 

 
 

 
 
 
 

 
 

 

 

 

 
 
 
 

 

Figure (3) Hill Climbing Search Tree 
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Figure (4) Best First Search Tree 
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The first advance approach to the best first search is known as A‐

search algorithm. A algorithm is simply define as a best first search plus 

specific function. This specific function represent the actual distance 

(levels) between the initial state and the current state and is denoted by 

g(n). A notice will be mentioned here that the same steps that are used 

in the best first search are used in an A algorithm but in addition to the 

g(n) as follow; 

F(n) h(n) + g(n) where h(n)  is  a  heuristic  function.  The  second  

advance approach to the best first search is known as A*‐search 

algorithm. A* algorithm is simply define as a best first search plus 

specific function. This specific function represent the actual distance 

(levels) between the current state and the goal state and is denoted by 

h(n). This algorithm will be described in detail in the next section of this 

chapter. 

But just as it was necessary to modify our search procedure 

slightly to handle both maximizing and minimizing players, it is also 

necessary to modify the branch‐and‐bound strategy to include two 

bounds, one for each of players. This modified strategy is called alpha‐

beta pruning. It requires the maintenance of two threshold, one 

representing a lower bound on the value that a maximizing node may 

ultimately be assigned (we call this alpha) and another representing an 

upper bound on the value that minimizing node may be assigned (this  

we call beta). 

The effectiveness of the alpha‐beta procedure depends greatly on 

the order in which paths are examined. If the worst paths are examined 

first, then no cutoffs at all will occur. But, of course, if the best path were 



known in advance so that it could be guaranteed to be examined first,  

we would not need to bother with the search process. If, however, we 

knew how effective the pruning technique is in the perfect case, we 

would have an upper bound on its performance in other situations. It is 

possible to prove that if the nodes are perfectly ordered, then the 

number of terminal nodes considered by a search to depth d using 

alpha‐beta pruning is approximately equal to twice the number of 

terminal nodes generated by a search to depth d/2 without alpha‐beta. 

A doubling of the depth to which the search can be pursued is a 

significant gain. Even though all of this improvement cannot typically be 

realized, the alpha‐beta technique is a significant improvement to the 

minimax search procedure. 

7‐ A* Search: minimizing the total estimated solution cost 
 

The most widely‐known form of best‐first search is called A* 

search (pronounced "A‐star search"). It evaluates nodes by combining 

g(n), the cost to reach the node, and h(n), the cost to get from the node 

to the goal: 

f(n) = g(n) + h(n). 

 
Since g(n) gives the path cost from the start node to node n, and h(n) is 

the estimated cost of the cheapest path from n to the goal, we have 

f (n) = estimated cost of the cheapest solution through n. 

 
Thus, if we are trying to find the cheapest solution, a reasonable thing to 

try first is the node with the lowest value of g(n) + h(n). It turns out that 

this strategy is more than just reasonable: provided that the heuristic 

function h(n) satisfies certain conditions,  A* search is    both    complete 



and optimal. The optimality of A* is straightforward to analyze if it is 

used with TREE‐SEARCH. In this case, A* is optimal if h(n) is an  

admissible heuristic‐that is, provided that h(n) never overestimates the 

cost to reach the goal. Admissible heuristics are by nature optimistic, 

because they think the cost of solving the problem is less than it actually 

is. Since g(n) is the exact cost to reach n, we has immediate consequence 

that f(n) never overestimates the true cost of a solution through n. 

7.1 A*‐ Search Algorithm 

 
As we mentioned before, the A* algorithm to be discussed shortly 

is a complete realization of the best first algorithm that takes into 

account these issues in detail. The following definitions, however, are 

required for representing the A* algorithm. These are in order. 

Definition 3.1: A node is called open if the node has been generated and 

the h'(x) has been applied over it but it has not been expanded yet. 

Definition 3.2: A node is called closed if it has been expanded for 

generating offsprings. 

In order to measure the goodness of a node in A* algorithm, we require 

two cost functions: 

Heuristic cost. 

Generation cost. 

The heuristic cost measures the distance of the current node x 

with respect to the goal and is denoted by h(x). The cost of generating a 

node x, denoted by g(x), on the other hand measures the distance of 

node x with respect to the starting node in the graph. The total cost 



function at node x, denoted by f(x), is the sum of g(x) plus h(x). The 

generation cost g(x) can be measured easily as we generate node x 

through a few slate transitions. For instance, if node x was generated 

from the starting node through m state transitions, the cost g(x) will be 

proportional to m (or simply m). But how does one evaluate the h(x)? It 

may  be recollected that h(x) is the cost yet to be spent to reach the   

goal from the current node x. Obviously, any cost we assign as h(x) is 

through prediction. The predicted cost for h(x) is generally denoted by 

h'(x). Consequently, the predicted total cost is denoted by f(x), where: 

f '(x) = g(x) + h'(x). 

 
7.2 A* Procedure 

 
Here are the basic steps that are considered to implement the A* 

procedure to solve problems in an intelligent manner: 

1. Operations on states generate children of the state currently 

under examination. 

2. Each new state is checked to see whether it has occurred before 

thereby preventing loops. 

3. Each state n is given an f value equal to the sum of its depth in the 

search space g(n) and a heuristic estimate of its distance to a goal 

h(n). 

4. States on open are sorted by their f examined or a goal. 

 
5. As an implementation point, the algorithm’s can be improved 

through maintenance of perhaps as heaps or leftist trees. 



8‐ The Alpha‐Beta Search Algorithm 
 

The idea for alpha‐beta search is simple: rather than searching the 

entire space to the ply depth, alpha‐beta search proceeds in a depth‐

first fashion. Two values, called alpha and beta, are created during 

the search. The alpha value associated with MAX nodes, can never 

decrease, and the beta value associated with MIN nodes, can never 

increase. Two rules for terminating search, based on alpha and beta 

values, are: 

1. Search can be stopped below any MIN node having a beta value 

less than or equal to the alpha value of any of its MAX ancestors. 

2. Search can be stopped below any MAX node having an alpha 

value greater than or equal to the beta value of any of its MIN 

node ancestors. 

Alpha‐beta pruning thus expresses a relation between nodes at ply n 

and nodes at ply n + 2 under which entire subtrees rooted at level n + 

1 can be eliminated from consideration. Note that the resulting 

backed‐up value is identical to the minimax result and the search 

saving over minimax is considerable. With fortuitous ordering states 

in the search space, alpha‐beta can effectively double the depth of 

the search considered with a fixed space/time computer 

commitment. If there is a particular unfortunate ordering, alpha‐beta 

searches no more of the space than normal minimax; however, the 

search is done in only one pass. 



8.1 The Alpha‐Beta Cutoff Procedure (Tree Pruning) 

 
c(n) = M(n) – O(n) 

 
Where M(n) = number of my possible winning lines. 

 
Now, we will discuss a new type of algorithm, which does not 

require expansion of the entire space exhaustively. This algorithm is 

referred to as alpha‐beta cutoff algorithm. In this algorithm, two extra  

ply of movements are considered to select the current move from 

alternatives. Alpha and beta denote two cutoff levels associated with 

MAX and MIN nodes. As it is mentioned before the alpha value of MAX 

node cannot decrease, whereas the beta value of the MIN nodes cannot 

increase. But how can we compute the alpha and beta values? They are 

the backed up values up to the root like MINIMAX. There are a few 

interesting points that may be explored at this stage. Prior to the process 

of computing MAX / MIN of the backed up values of the children, the 

alpha‐beta cutoff algorithm estimates e(n) at' all fringe nodes n. Now, 

the values are estimated following the MINIMAX algorithm. Now, to 

prune the unnecessary paths below a node, check whether: 

 
 

 The beta value of any MIN node below a MAX node is less than or 

equal to its alpha value. If yes. prune that path below the MIN node. 

 The alpha value of any MAX node below a MIN node exceeds the 

beta value of the MIN node. if yes prune the nodes below the MAX 

node. 

Based on the above discussion, we now present the main steps in the   α-β 

search algorithm. 



1. Create a new node, if it is the beginning move, c1seexpand the 

existing tree by depth first manner. To make a decision about the 

selection of a move at depth d, the tree should be expanded at least 

up to a depth (d + 2). 

2. Compute e(n) for all leave (fringe) nodes n in the tree. 

3. Computer αmin (for max nodes) and βmax values (for min nodes) at the 

ancestors of the fringe nodes by the following guidelines. Estimate 

the minimum of the values (e or α) possessed by the children of a 

MINIMIZER node N and assign it its βmax value. Similarly, estimate 

the maximum of the values (e or β) possessed by the children of a 

MAXIMIZER node N and assign it its αmin value. 

4. If the MAXIMIZER nodes already possess αmin  values, then    their 

current αmin value = Max (αmin value, αmin,); on tile other hand, if the 

MANIMIZER nodes already possess βmax values, then their current 

βmax value = MIN (βmax value, βmax). 

5. If the estimated βmax value of a MINIMIZER node N is less than the 

αmin value of its parent MAXIMIZER node N' then there is no need 

to search below the node MINIMIZER node N. Similarly, if the αmin 

value of a MAXIMIZER node N is more than the βmax value of its 

parent node N then there is no need to search below node N. 



1. Introduction to Expert Systems 
 
 

Expert systems are computer programs that are constructed to do 

the kinds of activities that human experts can do such as design, 

compose, plan, diagnose, interpret, summarize, audit, give advice. The 

work such a system is concerned with is typically a task from the worlds 

of business or engineering/science or government. 

Expert system programs are usually set up to operate in a manner 

that will be perceived as intelligent: that is, as if there were a human 

expert on the other side of the video terminal. 

A characteristic body of programming techniques give these 

programs their power. Expert systems generally use automated 

reasoning and the so‐called weak methods, such as search or heuristics, 

to do their work. These techniques are quite distinct from the well‐ 

articulated algorithms and crisp mathematical procedures more 

traditional programming. 

 

 
 

Figure (1) the vectors of expert system development 
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As shown in Figure(1), the development of expert systems is based 

on two distinct, yet complementary, vectors: 

a. New programming technologies that allow us to deal with knowledge 

and inference with ease. 

b. New design and development methodologies that allow us to 

effectively use these technologies to deal with complex problems. 

The successful development of expert systems relies on a well‐ 

balanced approach to these two vectors. 

2. Expert System Using 
 
 

Here is  a  short  nonexhaustive  list  of  some  of  the  things  expert 

systems have been used for: 

 To approve loan applications, evaluate insurance risks, and 

evaluate investment opportunities for the financial community. 

 To help chemists find the proper sequence of reactions to create 

new molecules. 

 To configure the hardware and software in a computer to match 

the unique arrangements specified by individual customers. 

 To diagnose and locate faults in a telephone network from tests 

and trouble reports. 

 To identify and correct malfunctions in locomotives. 

 To help geologists interpret the data from instrumentation at the 

drill tip during oil well drilling. 

 To help physicians diagnose and treat related groups of diseases, 

such as infections of the blood or the different kinds of cancers. 



 To help navies interpret hydrophone data from arrays of 

microphones on the ocean floor that are used t\u the surveillance 

of ships in the vicinity. 

 To figure out a chemical compound's molecular structure from 

experiments with mass spectral data and nuclear magnetic 

resonance. 

 To examine and summarize volumes of rapidly changing data that 

are generated too last for human scrutiny, such as telemetry data 

from landsat satellites. 

Most of these applications could have been done in more traditional 

ways as well as through an expert system, but in all these cases there 

were advantages to casting them in the expert system mold. 

In some cases, this strategy made the program more human 

oriented. In others, it allowed the program to make better judgments. 

In others, using an expert system made the program easier to 

maintain and upgrade. 

3. Expert Systems are Kind of AI ftrograms 
 
 

Expert systems occupy a narrow but very important corner of the 

entire programming establishment. As part of saying what they are, we 

need to describe their place within the surrounding framework of 

established programming systems. 

Figure(2) shows the three programming styles that will most 

concern us. Expert systems are part of a larger unit we might call AI 

(artificial intelligence) programming. Procedural programming is what 

everyone  learns  when  they  first  begin  to  use  BASIC  or  PASCAL      or 



FORTRAN. Procedural  programming  and  A.I  programming are quite 

different in what they try to do and how they try to do it. 

 
 
 

 

 

 
Figure( 2) three kinds of programming 

 
In traditional programming (procedural programming), the 

computer has to be told in great detail exactly what to do and how to do 

it. This style has been very successful for problems that are well defined. 

They usually are found in data processing or in engineering or scientific 

work. 

AI programming sometimes seems to have been defined by 

default, as anything that goes beyond what is easy to do in traditional 

procedural programs, but there are common elements in most AI 

programs. What characterizes these kinds of programs is that they deal 

with complex problems that are often poorly understood, for which 

there is no crisp algorithmic solution, and that can benefit from some 

sort of symbolic reasoning. 
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There are substantial differences in the internal mechanisms of 

the computer languages used for these two sorts of problems. 

Procedural programming focuses on the use of the assignment  

statement (" = " or ":‐") for moving data to and from fixed, prearranged, 

named locations in memory. These named locations are the program 

variables. It also depends on a characteristic group of control constructs 

that tell the computer what to do. Control gets done by using 

if‐then‐else goto 

 
do‐while procedure calls 

 
repeat‐until sequential execution (as default) 

 
AI programs are usually written in languages like Lisp and Prolog. 

Program variables in these languages have an ephemeral existence on 

the stack of the underlying computer rather than in fixed memory 

locations. Data manipulation is done through pattern matching and list 

building. The list techniques are deceptively simple, but almost any data 

structure can be built upon this foundation. Many examples of list 

building will be seen later when we begin to use Prolog. AI programs also 

use a different set of control constructs. They are : 

procedure calls 

sequential execution 

recursion 



4. Expert System, Development Cycle 
 
 

The explanation mechanism allows the program to explain its 

reasoning to the user, these explanations include justification for the 

system's conclusions, explanation of why the system needs a particular 

piece of data. Why questions and How questions. Figure (3) below shows 

the exploratory cycle for rule based expert system. 

 

 
 
 

Figure( 3) The exploratory cycle for expert system 
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5. Expert System Architecture and Components 
 
 

The architecture of the expert system consists of several components as 

shown in figure (4) below: 

 

 
 
 
 
 
 
 

Figure( 4)Expert system architecture 
 
 

 

5.1. User Interface 
 

The user interacts with the expert system through a user interface 

that make access more comfortable for the human and hides much of 

the system complexity. The interface styles includes questions and 

answers, menu‐driver, natural languages, or graphics interfaces. 
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5.2. Explanation ftrocessor 
 

The explanation part allows the program to explain its reasoning 

to the user. These explanations include justifications for the system's 

conclusion (HOW queries), explanation of why the system needs a 

particular piece of data (WHY queries). 

 
 
 
 

5.3. Knowledge Base 
 

The heart of the expert system contains the problem solving 

knowledge (which defined as an original collection of processed 

information) of the particular applications, this knowledge is  

represented in several ways such as if‐then rules form. 

5..4 Inference Engine 
 

The inference engine applies the knowledge to the solution of 

actual problems. It s the interpreter for the knowledge base. The 

inference engine performs the recognize act control cycle. 

The inference engine consists of the following components:‐ 

 
1. Rule interpreter. 

2. Scheduler 

3. HOW process 

4. WHY process 

5. knowledge base interface. 



5.5. Working Memory 
 

It  is  a  part  of  memory used for  matching  rules and calculation. 

When the work is finished this memory will be raised. 
 

6. Systems that Explain their Actions 
 
 

An interface system that can explain its behavior on demand will seem 

much more believable and intelligent to its users. In general, there are 

two things a user might want to know about what the system is doing. 

When the system asks for a piece of evidence, the user might want to 

ask, 

"Why do you want it?" 

 
When the system states a conclusion, the user will frequently want to 

ask, 

"How did you arrive at that conclusion?" 

 
This section explores simple mechanisms that accommodate both 

kinds of questioning. HOW and WHY questions are different in several 

rather obvious ways that affect how they can be handled  in  an 

automatic reasoning program. There are certain natural places where 

these questions are asked, and they are at opposite ends of the 

inference tree. It is appropriate to let the user ask a WHY question when 

the system is working with implications at the bottom of the tree; that  

is: when it will be necessary  to ask the user to supply data. 



The system never needs to ask for additional information when it 

is working in the upper parts of the tree. These nodes represent 

conclusions that the system has figured out. rather than asked for. so a 

WHY question is not pertinent. 

To be able to make the conclusions at the top of the tree, 

however, is the purpose for which all the reasoning is being done. The 

system is trying to deduce information about these conclusions. It is 

appropriate to ask a HOW question when the system reports the results 

of its reasoning about such nodes. 

There is also a difference in timing of the questions. WHY 

questions will be asked early on and then at unpredictable points all 

throughout the reasoning. The system asks for information when it 

discovers that it needs it. The. time for the HOW questions usually 

comes at the end when all the reasoning is complete and the system is 

reporting its results. 
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