

Artificial intelligence

What are Knowledge Representation Schemes ?

In Al, there are four basic categories of representational schemes: logical,

procedural, network and structured representation schemes.

1) Logical representation uses expressions in formal logic to represent its

knowledge base. Predicate Calculus is the most widely used

representation scheme.

2) Procedural representation represents knowledge as a set of instructions for

solving a problem. These are usually if-then rules we use in rule-based systems.

3) Network representation captures knowledge as a graph in which the nodes

represent objects or concepts in the problem domain and the arcs -represent relations or

associations between them.

4) Structured representation extends network representation schemes by allowing each

node to have complex data structures named slots with attached values.

We will focus on logic representation schemes in this chapter.

2.1 The Propositional Calculus

2.1.1 Symbols and Sentences

The prepositional calculus and, in the next subsection, the predicate

calculus are first of all languages. Using their words, phrases, and sentences, we

can represent and reason about properties and relationships in the world. The

first step in describing a language is to introduce the pieces that make it up: ils set

of symbols.

DEFINTION

PROPOSITIONAL CALCULUS SYMBOLS

The symbols of prepositional Calculus are, the prepositional symbols:

P. Q. R,S,T....

truth symbols

true, false

and connectives:

K,V, €, ‹, =

Prepositional symbols denote propositions of statements about the world that

may be either true or raise, such as "the car is red" or "water is wet."

Propositions are denoted by uppercase letters near the end of the English

alphabet. Sentences in the propoEitional calculus are formed from these atomic

symbols according to the following rules :

DEFINITION

PROPOSIONAL CALCULUS SENTENCES

Every prepositional symbol and truth symbol is a sentence.

For example: true, P, Q, and R are sentences.

The negation of a sentence is a sentence

for example: ¬P and ¬false are sentences

The conjunction or and two sentences : is a sentence

For example: P K¬P is a sentence.

The disjunction or of two sentences is a sentence.

For example P K¬P. is a sentence,

The implication of one sentence for another is a sentence.

For example P ‹Q» is sentence.

The equivalence of two sentences Is a sentence.

For example: P v Q = R is a sentence.

Legal sentences are also called well-formed formulas 01 WFFs.

IN expressions of the form P K Q. P and Q are called the conjuncts In P V Q and

Q are referred to as disjuncts in an implication P ‹ Q, P is the premise or antecedent

and Q, the conclusion or consequent .

In propositional calculus sentences. the symbols() and [] are used to group

symbols into subexpressions and so control their order of evaluation and meaning . for

example (P K Q)=R is quit different from P V (Q=R), as can be

demonstrated using truth tables (section 2.1.2).

An expression is a sentence, or well-formed formula, of the prepositional calculus

if and only if it can be formed of legal symbols through some sequence of these rules . For

example .

P K Q ‹R = ¬P v ¬ QvR

is a well-formed sentence in the in the propositions calculus because:

P, Q, and R are-proposition and .thus sentences.

P K Q, the conjunction of two sentences, is a sentence.

(P K Q) ‹ R, the implication of a sentence for another, is a sentence.

¬P and ¬Q, the negations of sentences, are sentences.

¬P v ¬Q, the disjunction of two sentences, is a sentence.

¬P v ¬ Q v R, the disjunction of two sentences, is a sentence.

((P KQ) ‹R)= ¬ P v ¬ Q v R, the equivalence of two sentences, is a sentence.

This is our original sentence, which has been Constructed through a series of applications of

legal roles and is therefore well formed.

DEFINITION

PROPOSITIONAL CALCULUS SEMANTICS

An interpretation of a set of propositional is the assignment of a truth

value , either T or F , to each propositional symbol .

The symbol true is always assigned T, and the symbol false is assigned F .

The interpretation or truth value for sentence is determined by:

The truth assignment of negation , ¬ P, where P is any propositional

symbol , is F if the assignment to P is T , and T if the assignment to P

is F

The truth assignment of conjunction K, is T only when both conjuncts

have truth value T; otherwise it is F.

The truth assignment of disjunction, v is F only when both disjuncts have

truth value F; otherwise it is T.

The truth assignment of implication , ‹ is F only when the premise or

symbol before the implication is T and the truth value of the consequent or

symbol after the implication is F; otherwise it is T .

The truth assignment of equivalence , = is T only when both

expresslone have the same assignment for all possible interpretation

otherwise it is F .

P Q PKQ

Figure 2.1 truth table for the operator K

P Q ¬P ¬pvQ P‹Q (¬pvQ)=(P‹Q)

T. T F T T T

T F F F F T

F T T T T T

F F T T T T

Figure 2.2 Truth table demonstrating the equivalence of (P‹Q) and

(¬pvQ)

By demonstrating that they have identical truth tables, we can prove the following prepositional calculus

equivalences. For prepositional expressions P, Q, and R;

¬ (¬P) = P

(P v Q)=(¬P ‹Q)

The contra positive law : (P‹Q)=(¬Q‹¬P)

De morgan's law : ¬ (P v Q)=(¬P K ¬Q) and (P KQ)=(¬P v ¬Q)

The commutative laws : (P K Q)=(Q K P) and (P v Q) = (Q v P)

Associative law : ((P K Q) K R) = (P K (Q K R))

Associative law : ((P v Q) v R) = (P v (Q v R))

Distributive law : P v (Q K R) = (P v Q) K (P v R)

Distributive law : P K (Q v R) = (P K Q) v (P K R)

2.2 The Predicate Calculus

In prepositional calculus, each atomic symbol (P, Q, etc.) denotes a proposition of some complexity.

There is no way to access the components of an individual assertion. Predicate calculus provides this ability.

For example, instead pf letting a single prepositional symbol, P, denote :1he entire sentence "it rained on

Tuesday," we can create a predicate weather that describes a relationship between a date and the weather.

weather (Tuesday, rain) through inference rules we can manipulate predicate calculus expression accessing

their individual components and inferring new sentences.

Predicate calculus also allows expressions^ contain variables. Variables let us create general

assertions about classes of entities. For example, we could state that for :all values, of X, where X is a day of

the week , the statement weather (X, rain) is true ; I,e., it rains it rains everyday. As with propositional

calculus, we will first define the syntax of the language and then discuss its semantics.

Examples of English sentences represented in predicate calculus:

1- If it doesn't rain tomorrow, Tom will go to the mountains.

¬ weather (rain, tomorrow) ‹go(tom, mountains).

2- Emma is a Doberman pinscher and a good dog. Good dog

(emma) K isa (emma, Doberman)

3. All basketball players are tall.

6 X (basketball _ player(X) ‹tall (X))

4- Some people like anchovies.

E X (person(X) K likes(X, anchovies)),

5- If wishes were horses, beggars would ride. equal(wishes,

horses) ‹ride(beggars).

6- Nobody likes taxes

¬ E X likes(X,taxes).

3-1 What is Resolution?

Resolution is a technique for theorem. proving in propositional and

predicate calculus which attempts to show that the negation of the

statement produces a contradiction with the known statements.

In the following expression, uppercase letters indicate variables

(W,X,Y,andZ); lowercase letters in the middle of the alphabet

indicate Constants or bound variables (I, m, and n); and early

alphabetic lowercase letters indicate the predicate names (a, b, c, d,

and e). To improve readability of the expressions, we use two types of

brackets: () and []. Where possible in the derivation, we remove

redundant brackets: The expression we will reduce to clause form is:

(i)(6X)([a(X) K b(X)] ‹ [c(X, I) K (EY)(EZ)[c(Y, Z)] ‹ d(X, Y))]) V (6X)(e(X))

1. First we eliminate the by using: a → b ≡ ¬ a v b. This transformation

reduces the expression in (i) above:

(ii)(6X)(¬ [a(X) K b(X)]$[c(X, I) K (EY)(¬(EZ)[c(Y, Z)$d(X, Y))]$ ‹ d(X, Y))]) V (6X)(e(X))

2. Next we reduce the scope of negation."This may be accomplished

using a number of the transformations that includes:

¬(¬a) ÷ a

¬(EX)a(X) ÷ (6X)¬a(X)

¬(6X)b(X) ÷ (EX)¬b(X)

¬(a$b) ÷ ¬a$¬b

¬(a$b) ÷ ¬a$¬b

Using the second and fourth equivalences (ii) becomes:

(iii)(6X) (¬ [a(X)$b(X)]$ [c(X, I) K (EY)((6Z)[¬c(Y, Z)$d(X, Y]))] $(6X)(e(X))

3. Next we standardize by renaming all variables so that variables bound

by different quantifiers have unique names. Because variable names

are "dummies" or "place holders," the particular name chosen for a

variable does not affect either the truth value or the generality of the

clause. Transformations used at this step are of the form:

((6X)a(X) v (6X)b(X≡(6X)a(X) v (y)b(y)

Because {iii)bas two instances of the variable X, we rename:

(ir)(6X)(¬ a(X)$¬b(X)]$[c(X, I) K (EY)((6Z)[¬c(Y, Z)$d(X, Y))]$d(X, Y))]) V (6W)(e(W))

4. Move all quantifiers to the left without changing their order. This is

possible. because step 3 has removed the possibility of any conflict

between variable names. (iv) now becomes:

(r)(6X)(EY)(6Z)(6W)(¬ a(X)$¬b(X)]$[c(X, I) K ([¬c(Y, Z)$d(X, Y))]$ e(W))]

After step 4 the clause is said to be in prenex normal form, because all

the quantifiers are in front as a prefix and the expression or matrix

follows after.

5. At this point all existential quantifiers are eliminated by a process called

skolemization. Expression (v) has an existential quantifier for Y.

When an expression contains an existentially quantified variable, for

example, (E Z)(foo(...Z,...)), it may be concluded that there is an

assignment to Z under which foo is true. Skolemization identifies such a

value. Skolemization does not necessarily show how to produce such a

value; It is only a method for giving a name to an assignment that must

exist. If k represents that assignment, then we have foo(….K….).

Thus:

(6X)(dog(X)may be replaced by dog (fido)

where the name fido is picked from the domain of definition of X to

represent that individual X. fido is called a skolem constant. If the

prediCate has more than one argument and the existentially quantified

variable is within the scope of universally quantified variables, the

existential variable must be a function of those other variables. This is

represented in the skolemizatlon process:

(6X)(EY)(mother(X, Y))

This expression indicates that every person has' a mother. Every person is

an X and the existing mother will be a function of the particular person X

that is picked. Thus skolemization gives:

(6X)mother(X, m(X))

which indicates that each X has a mother (the m of that X). In another

example:

Is skolemized to:

(6X)(6Y)(EZ)(6W)(foo(X, Y, Z, W))

(6X)(6Y)(6W)(foo(X, Y), W))

We note that the existentially quantified Z was. Within the scope (to the

right of) universally quantified X and Y Thus the skolemassignment is a

function of X and Y but not of W. With skolemization (v) becomes:

(ri)(6X)(6Z)(6W)([¬a(X)$¬b(X)]$[c(X,I)$([¬c(f(X),Z)]$d(X,f(X)))])$e(W))

where f is the skolem function of X that replaces the existential Y. Once

the skolemization has occurred, step 6 can take place, which simply

drops the prefix.

6. Drop all universal quantification. By this point only universally

quantified variables exist (step 5) with no variable conflicts (step 3).

Thus all<quantifiers can be dropped, and any proof procedure employed

assumes all variables are universally quantified.

Formula (vi) now becomes:

(rii)[¬a(X)$¬b(X)]$[c(X, I)$(¬c(f(X), Z)$d(X, f(X)))]$e(W)

7. Next we convert the expression to the conjunct of disjuncts form. This

requires using the associative and distributive properties of A and v.

Recall that

a$(b$c) = (a$b)$c

a$(b$c) = (a$b)$c

which indicates that $ or $ may be grouped in any desired fashion. The

distributive property is also used, when necessary. Because

a$(b$c)

is already in clause form, A is not distributed However, $ must be

distributed across $ using:

a$(b$c) = (a$b)$(a$c)

The final form of (vii) is:

(riii)[¬a(X)$¬b(X)$c(X, I)$e(W)$[¬a(X)$¬b(X)$¬c(f(X), Z)$d(X, f(X))$e(W)]

8. Now call each conjunct a separate clause. In the example (viii) above

there are two clauses:

(ixa)[¬a(X) V c(X, I) V e(W)] K

(ixb)[¬a(X) V ¬b(X) V c(f(X), Z) V d(X, f(X)) V e(W)]

9. The final step is to standardize the variables apart again. This requires

giving. The variable in each clause generated by step 8 different names.

This procedure arises from the following equivalence:

(6X)(a(X) K b(X)) ÷ (6X)a(X) K (6Y)b(Y)

Which follows from the nature of variable names as place holders. (ixa)

and (ixb) now become, using new-variable names U and V:

(xa)[¬a(X) V ¬b(X) V c(X, I) V e(W)] K

(xa)[¬a(U) V ¬b(U) V ¬c(f(U), Z) V d(U, f(U))V e(V)]

Ex (3): As a final example, suppose:

......

"All people who are not poor and are smart are hippy. Those people who'
read are not stupid. John can read are is wealthy. Happy people have
exciting lives. Can anyone be found with an exciting life?"

a) First change the sentences to predicate form:

We assume 6X (smart (X) ≡ stupid (X) and 6Y (wealthy (Y) ≡ poor (Y)),

and get:

6X(¬Poor (X)K smart (X) ‹ happy(X))

6Y(read(Y) ‹ smart (Y))

read (john)K ¬ poor (john)

6Z (happy (Z) ‹ exciting (Z)

The negation of the conclusion is:

¬EW (exciting (W))

b) These predicate calculus expressions for the happy life problem are

transformed into the following clauses:

poor (X) V ¬ smart (X) V happy (X)

¬ read (Y) V smart(Y)

read (john)

¬ poor (john)

¬ happy (Z) V exciting (Z)

¬ exciting (W)

The resolution refutation for this example is found in Figure (3-4).

¬ exciting(W) ¬ happy(Z)) V exciting (Z)

¬ happy (Z) poor (X) V ¬ smart (X) V happy (X)

poor (X) V ¬ smart (X) ¬ read (Y) V smart(Y)

¬ poor(john) poor(Y) ¬ read (Y)

¬read(john) read (john)

(

Figure (3-4):Resolution prove for the "exciting life" problem .

(john/Y)

(Z/W)

(X/Z)

(Y/X)

)

1 ‐Intelligent Search Methods and Strategies

Search is inherent to the problem and methods of artificial

intelligence (AI). This is because AI problems are intrinsically complex.

Efforts to solve problems with computers which human can routinely

innate cognitive abilities, pattern recognition, perception and

experience, invariably must turn to considerations of search. All search

methods essentially fall into one of two categories, exhaustive (blind)

methods and heuristic or informed methods.

2 ‐State Space Search

The state space search is a collection of several states with

appropriate connections (links) between them. Any problem can be

represented as such space search to be solved by applying some rules

with technical strategy according to suitable intelligent search algorithm.

What we have just said, in order to provide a formal description of a

problem, we must do the following:

1‐ Define a state space that contains all the possible configurations

of the relevant objects (and perhaps some impossible ones). It is,

of course, possible to define this space without explicitly

enumerating all of the states it contains.

2‐ Specify one or more states within that space that describe

possible situations from which the problem‐solving process may

start. These states are called the initial states.

3‐ Specify one or more states that would be acceptable as solutions

to the problem. These states are called goal states.

4‐ Specify a set of rules that describe the actions (operators)

available. Doing this will require giving thought to the following

issues:

 What unstated assumptions are present in the informal

problem description?

 How general should the rules be?

 How much of the work required to solve the problem

should be precomputed and represented in the rules?

The problem can then be solved by using rules, in combination

with an appropriate control strategy, to move through the problem

space until a path from an initial state to a goal state is found. Thus the

process of search is fundamental to the problem‐solving process. The

fact that search provides the basis for the process of problem solving

does not, however, mean that other, more direct approaches cannot

also be exploited. Whenever possible, they can be included as steps in

the search by encoding them rules. Of course, for complex problems,

more sophisticated computations will be needed. Search is a general

mechanism that can be used when no more direct methods is known. At

the same time, it provide the framework into which more direct

methods for solving subparts of a problem can be embedded.

To successfully design and implement search algorithms, a programmer

must be able to analyze and predict their behavior. Questions that need

to be answered include:

 Is the problem solver guaranteed to find a solution?

 Will the problem solver always terminate, or can it become caught

in an infinite loop?

 When a solution is found, is it guaranteed to be optimal?

 What is the complexity of the search process in terms of time

usage? Memory usage?

 How can the interpreter most effectively reduce search

complexity?

 How can an interpreter be designed to most effectively utilize a

representation language?

To get a suitable answer for these questions search can be structured

into three parts. A first part presents a set of definitions and concepts

that lay the foundations for the search procedure into which induction is

mapped. The second part presents an alternative approaches that have

been taken to induction as a search procedure and finally the third part

present the version space as a general methodology to implement

induction as a search procedure. If the search procedure contains the

principles of the above three requirement parts, then the search

algorithm can give a guarantee to get an optimal solution for the current

problem.

3 ‐General Problem Solving Approaches

There exist quite a large number of problem solving techniques in

AI that rely on search. The simplest among them is the generate‐and‐

test method. The algorithm for the generate‐and‐test method can be

fom1ally stated in the figure (1) follow.

It is clear from the above algorithm that the algorithm continues the

possibility of exploring a new state in each iteration of the repeat‐until

loop and exits only when the current state is equal to the goal. Most

important part in the algorithm is to generate a new state. This is not an

easy task.

Figure (1) Generate and Test Algorithm

If generation of new states is not feasible, the algorithm should be

terminated. In our simple algorithm, we, however, did not include this

intentionally to keep it simplified. But how does one generate the states

of a problem? To formalize this, we define a four tuple, called state

space, denoted by

{nodes, arc, goal, current },

where

nodes represent the set of existing states in the search space;

an arc denotes an operator applied to an existing state to cause

transition to another state; goal denotes the desired state to be

identified in the nodes; and current represents the state, now generated

for matching with the goal. The state space for most of the search

problems takes the form of a tree or a graph. Graph may contain more

Procedure Generate & Test

Begin

Repeat

Generate a new state and call it current‐state;

Until current‐state = Goal;

End.

than one path between two distinct nodes, while for a tree it has

maximum value of one.

To build a system to solve a particular problem, we need to do four

things:

1. Define the problem precisely. This definition must include precise

specifications of what the initial situation(s) will be as well as

what final situations constitute acceptable solutions to the

problem.

2. Analyze the problem. A few very important features can have an

immense impact on the appropriateness of various possible

techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to

solve the problem.

4. Choose the best problem‐solving technique(s) and apply it (them)

to the particular problem.

Measuring problem‐solving performance is an essential matter in

term of any problem solving approach. The output of a problem‐solving

algorithm is either failure or a solution. (Some algorithm might get stuck

in an infinite loop and never return an output.) We will evaluate an

algorithm's performance in four ways:

 Completeness: Is the algorithm guaranteed to find a

solution when there is one?

 Optimality: Does the strategy find the optimal solution?

 Time complexity: How long does it take to find a solution?1

 Space complexity: How much memory is needed to perform

the search?

4 ‐ Search Technique

Having formulated some problems, we now need to solve them.

This is done by a search through the state space. The root of the search

tree is a search node corresponding to the initial state. The first step is to

test whether this is a goal state. Because this is not a goal state, we need

to consider some other states. This is done by expanding the current

state; that is, applying the successor function to the current state,

thereby generating a new set of states. Now we must choose which of

these possibilities to consider further. We continue choosing, testing and

expanding either a solution is found or there are no more states to be

expanded. The choice of which state to expand is determined by the

search strategy. It is important to distinguish between the state space

and the search tree. For the route finding problem, there are only N

states in the state space, one for each city. But there are an infinite

number of nodes.

There are many ways to represent nodes, but we will assume that a node is

a data structure with five components:

 STATE: the state in the state space to which the node corresponds؛

 PARENT-NODE: the node in the search tree that generated this

node؛

 ACTION: the action that was applied to the parent to generate the

node؛

 PATH‐COST: the cost, traditionally denoted by g(n), of the path

from the initial state to the node, as indicated by the parent

pointers; and

 DEPTH: the number of steps along the path from the initial state.

As usual, we differentiate between two main families of search

strategies: systematic search and local search. Systematic search visits

each state that could be a solution, or skips only states that are shown to

be dominated by others, so it is always able to find an optimal solution.

Local search does not guarantee this behavior. When it terminates, after

having exhausted resources (such as time available or a limit number of

iterations), it reports the best solution found so far, but there is no

guarantee that it is an optimal solution. To prove optimality, systematic

algorithms are required, at the extra cost of longer running times with

respect to local search. Systematic search algorithms often scale worse

with problem size than local search algorithms.

5 ‐ Search Technique Types

Usually types of intelligent search are classified into three classes;

blind, heuristic and random search. Blind search is a technique to find

the goal without any additional information that help to infer the goal,

with this type there is no any consideration with process time or

memory capacity. In the other side the heuristic search always has an

evaluating function called heuristic function which guides and controls

the behavior of the search algorithm to reach the goal with minimum

cost, time and memory space. While random search is a special type of

search in which it begins with the initial population that is generated

randomly and the search algorithm will be the responsible for

generating the new population bases on some operations according to a

special type function called fitness function. The following sections have

details of each type of search with simple examples.

5.1 Blind Search

There many search strategies that come under the heading of

blind search (also called uniformed search). The term means that they

have no additional information about states beyond that provided in the

problem definition. All they can do is generate successors and

distinguish a goal state from a nongoal state.

Thus blind search strategies have not any previous information

about the goal nor the simple paths lead to it. However blind search is

not bad, since more problems or applications need it to be solved; in

other words there are some problems give good solutions if they are

solved by using depth or breadth first search.

Breadth first search is a simple strategy in which the root node is

expanded first, then all the successors of the root node are expanded

next, then their successors, and so on. In general all the nodes are

expanded at a given depth in the search tree before any nodes at the

next level are expanded. Breadth first search can be implemented by

calling TREE‐SEARCH with any empty fringe that is a first‐in‐first‐out

(FIFO) queue, assuring that the nodes that are visited first will be

expanded first. In other words, calling TREE‐SEARCH (problem, FIFO‐

QUEUE) result in a breadth first search. The FIFO queue puts all newly

generated successors at the end of the queue, which means that shallow

nodes are expanded before deeper nodes.

Depth first search always expands the deepest node in the current

fringe of the search tree. The search proceeds immediately to the

deepest level of the search tree, where the nodes have no successors. As

those nodes are expanded, they are dropped from the fringe, so then

the search “backs up” to the next shallowest node that still has

unexplored successors. This strategy can be implemented by TREE‐

SEARCH with a last‐in first‐out (LIFO) queue, also known as a stack. As an

alternative to the TREE‐SEARCH implementation, it is common to

implement depth‐first search with a recursive function that calls itself on

each of its children in turn.

Figure (2) Blind Search Tree

The paths from the initial state (A) to the goal state (H) are:

Using Breadth first search A€ B€ C€ D€ E€ F € G € H

Using Depth first search A€ B€ D€ G € E€H

Initial state

Goal state

5.2 Heuristic Search

Classically heuristics means rule of thumb. In heuristic search, we

generally use one or more heuristic functions to determine the better

candidate states among a set of legal states that could be generated

from a known state. The heuristic function, in other words, measures

the fitness of the candidate states. The better the selection of the states,

the fewer will be the number of intermediate states for reaching the

goal. However; the most difficult task in heuristic search problems is the

selection of the heuristic functions. One has to select them intuitively, so

that in most cases hopefully it would be able to prune the search space

correctly.

The search processes that will be described in this chapter build on

the fact that the search does not proceed uniformly outward from the

start node: instead, it proceeds preferentially through nodes that

heuristic, problem‐specific information indicates might be on the best

path to a goal. We call such processes best‐first or heuristic search. Here

is the basic idea.

1. We assume that we have a heuristic (evaluation) function, f. to

help decide which node is the best one to expand next. This

function is based on information specific to the problem domain.

It is real‐valued function of state descriptions.

2. Expand next that node, n, having the smallest value of f(n).

Resolve ties arbitrarily.

3. Terminate when the node to be expanded next is a goal node.

A function which applies such an algorithm to nodes and assigns a

value to them accordingly is a heuristic function. Determining good

heuristics is very often the most difficult element involved in solving

complex problems in the symbolic artificial intelligence tradition.

Therefore, heuristic can be defined as “the study of the methods and

rules of discovery and invention”.

AI problems solvers employ heuristics in two basic situations:

1. A problem may not have an exact solution because of inherent

ambiguities in the problem statement or available data. A given

set of symptoms may have several possible causes.

2. A problem may have an exact solution, but the computational cost

of finding it may be prohibitive. In many problems state space

growth is combinatorially explosive, with the number of possible

states increasing exponentially or factorially with the depth of the

search.

In order to solve many hard problems efficiently, it is often necessary

to compromise the requirements of mobility and systematicity and to

construct a control structure that is no longer guaranteed to find the

best answer but that will almost always find a very answer. Thus we

introduce the idea of a heuristic. A heuristic is a technique that improves

the efficiency of a search process, possibly by sacrificing claims of

completeness. Heuristics are like tour guides. They are good to the

extent that they point in generally interesting directions; they are bad to

the extent that they may miss points of interest to particular individuals.

Some heuristics help to guide a search process without sacrificing any

claims to completeness that the process might previously have had.

Others (in fact, many of the best ones) may occasionally cause an

excellent path to be overlooked. But, on the average, they improve the

quality of the paths that are explored. Using good heuristics, we can

hope to get good (though possibly nonoptimal) solutions to hard

problems, such as the traveling salesman, in less than exponential time.

There are some good general‐purpose heuristics that are useful in a

wide variety of problem domains. In addition, it is possible to construct

special‐purpose heuristics that exploit domain‐specific knowledge to

solve particular problems.

Performance of the search can be drastically improved by using

specific knowledge about a search problem to guide the decisions made

where to search. This knowledge can be presented in the form of

heuristics – rules that guide the decision‐making during the search. This

gives us another class of heuristic search algorithms. It is quite obvious

that heuristics will depend very much on the class of solvable problems.

The heuristic rules class is considered one of the more important and

complex way to guide the search procedure in which to reach the

solution (goal state) such class usually used in embedded system so to

form what today known as searching with heuristic embedded in rules.

The search for plans is guided by heuristics that provide an estimate

of the cost (heuristic value) that are extracted automatically from the

problem encoding P. In order to simplify the definition of some of the

heuristics, we introduce in some cases a new dummy End action with

zero cost, whose preconditions G1, . . . , Gn are the goals of the problem,

and whose effect is a dummy atom G. In such cases, we will obtain the

heuristic estimate h(s) of the cost from state s to the goal, from the

estimate h(G; s) of achieving the ’dummy’ atom G from s. In the section

3.7 a detail description about the heuristic search algorithms with simple

examples.

5.3 Random Search

Random Search is a method of searching with no planned

structure or memory. This method has the same intent of the typical

intuitive search, but the opposite strategy to achieve it. A random

technique may be preferred if it takes more time to devise a better

technique, or the additional work involved is negligible.

Random Search (RS) is a population‐based search algorithm. It is

first proposed by Price and also called Price's algorithm. RS first

randomly generates a population of samples from the parameter space,

and then uses downhill simplex method to move the population towards

the global optima. Suppose a n‐dimensional objective function is to be

optimized, the basic RS algorithm can be described as follows:

1. Randomly generate a population of m points from the parameter

space.

2. Randomly select n+1 points from the population and make a

downhill simplex move.

3. If the new sample is better than the worst member in the

population, then the worst member is replaced with this new

sample.

4. Repeat the above process until a certain stopping criterion is

satisfied.

In RS, random sampling is used for exploration and downhill simplex for

exploitation. Its balance strategy first executes exploration and then

switches completely to exploitation. Since exploration is only performed

in the beginning of the search, the convergence to the global optima is

not guaranteed. The problem of getting trapped in a local extreme can

be alleviated by using a large population or introducing new members

into the population with random sampling during the search. Despite of

this disadvantage, RS has proved to be very effective in practice and is

widely used. In addition, since there is no local search method involved,

RS is more robust to noise in the objective function. Besides it’s failing to

provide the convergence guarantee, another disadvantage is its low

efficiency. Especially in the beginning, the population is composed of

random samples

and RS essentially performs like a pure random sampling. Therefore, for

many situations in practice where it is desired to obtain a good solution

quickly, RS may not be able to fulfill the objective.

To make sure that RS being with suitable solutions the algorithm

must be evolved to decide the following features:

High efficiency is required for the desired search algorithm. More

specifically, the emphasis of the search algorithm should be on finding a

better operating point within the limited time frame instead of seeking

the strictly global optimum.

High dimension is another feature in solve problems. High‐dimensional

optimization problems are usually much more difficult to solve than low‐

dimensional problems because of “curse of dimensionality”.

6 ‐Heuristic Search Algorithms

In this section, we can saw that many of the problems that fall

within the purview of artificial intelligence are too complex to be solved

by direct techniques; rather they must be attacked by appropriate

search methods armed with whatever direct techniques are available to

guide the search. These methods are all varieties of heuristic search.

They can be described independently any particular task or problem

domain. But when applied to Particular problems, their efficacy is highly

dependent on the way they exploit domain‐specific knowledge since in

and of themselves they are unable to overcome the combinatorial

explosion to which search processes are so vulnerable. For this reason,

these techniques are often called weak methods. Although a realization

of the limited effectiveness of these weak methods to solve hard

problems by themselves has been an important result that emerged

from the last decades of AI research, these techniques continue to

provide the framework into which domain‐specific knowledge can be

placed, either by hand or as a result of automatic learning.

Hill climbing is a variant of generate‐and‐test in which feedback from

the test procedure is used to help the generator decide which direction

to move in the search space. In a pure generate‐and‐test procedure, the

test function responds with only a yes or no. but if the test function is

augmented with a heuristic function that provide an estimate of how

close a given is to a goal state. This is particularly nice because often the

computation of the heuristic function can be done at almost no cost at

the same time that the test for a solution is being performed. Hill

climbing is often used when a good heuristic function is available for

evaluating states but when no other useful knowledge is available. For

example, suppose you are in an unfamiliar city without a map and you

want to get downtown. You simply aim for the tall buildings. The

heuristic function is just distance between the current location and the

location of the tall buildings and the desirable states are those in which

this distance is minimized.

Now let us discuss a new heuristic method called best first search, which

is a way of combining the advantages of both depth‐first and breadth‐

first search into a single method.

The actual operation of the algorithm is very simple. It proceeds in steps,

expanding one node at each step, until it generates a node that

corresponds to a goal state. At each step, it picks the most promising of

the nodes that have so far been generated but not expanded. It

generates the successors of the chosen node, applies the heuristic

function to them, and adds them to the list of open nodes, after

checking to see if any of them have been generated before. By doing this

check, we can guarantee that each node only appears once in the graph,

although many nodes may point to it as a successors. Then the next step

begins.

The figure (3) bellow illustrates the hill climbing steps algorithm as it

described in tree data structure.

Also the figure (4) bellow shows the steps of the best first search

algorithm on a given tree as an assumption search space.

Figure (3) Hill Climbing Search Tree

Figure (3) Hill Climbing Search Tree

Step 1

A

Step 2

A

B
Step 3 (3)

C

(5)

D

(1)

A

B (3) C (5) D

E (7) F (6)

Step 4

A

B (3) C (5) D

E (7) F

E (2) F (1)

Figure (4) Best First Search Tree

Step 1

A

Step 2

A

B (3) C (5) D (1)

Step 3

A
Step 4

A

B (3) C (5) D B C (5) D

(4) E (6) F G (6) H (5) E (4) F (6)

Step 5

A

B C (5) D

G (6) H (5) E (4) F

I (2) J (1)

The first advance approach to the best first search is known as A‐

search algorithm. A algorithm is simply define as a best first search plus

specific function. This specific function represent the actual distance

(levels) between the initial state and the current state and is denoted by

g(n). A notice will be mentioned here that the same steps that are used

in the best first search are used in an A algorithm but in addition to the

g(n) as follow;

F(n) h(n) + g(n) where h(n) is a heuristic function. The second

advance approach to the best first search is known as A*‐search

algorithm. A* algorithm is simply define as a best first search plus

specific function. This specific function represent the actual distance

(levels) between the current state and the goal state and is denoted by

h(n). This algorithm will be described in detail in the next section of this

chapter.

But just as it was necessary to modify our search procedure

slightly to handle both maximizing and minimizing players, it is also

necessary to modify the branch‐and‐bound strategy to include two

bounds, one for each of players. This modified strategy is called alpha‐

beta pruning. It requires the maintenance of two threshold, one

representing a lower bound on the value that a maximizing node may

ultimately be assigned (we call this alpha) and another representing an

upper bound on the value that minimizing node may be assigned (this

we call beta).

The effectiveness of the alpha‐beta procedure depends greatly on

the order in which paths are examined. If the worst paths are examined

first, then no cutoffs at all will occur. But, of course, if the best path were

known in advance so that it could be guaranteed to be examined first,

we would not need to bother with the search process. If, however, we

knew how effective the pruning technique is in the perfect case, we

would have an upper bound on its performance in other situations. It is

possible to prove that if the nodes are perfectly ordered, then the

number of terminal nodes considered by a search to depth d using

alpha‐beta pruning is approximately equal to twice the number of

terminal nodes generated by a search to depth d/2 without alpha‐beta.

A doubling of the depth to which the search can be pursued is a

significant gain. Even though all of this improvement cannot typically be

realized, the alpha‐beta technique is a significant improvement to the

minimax search procedure.

7‐ A* Search: minimizing the total estimated solution cost

The most widely‐known form of best‐first search is called A*

search (pronounced "A‐star search"). It evaluates nodes by combining

g(n), the cost to reach the node, and h(n), the cost to get from the node

to the goal:

f(n) = g(n) + h(n).

Since g(n) gives the path cost from the start node to node n, and h(n) is

the estimated cost of the cheapest path from n to the goal, we have

f (n) = estimated cost of the cheapest solution through n.

Thus, if we are trying to find the cheapest solution, a reasonable thing to

try first is the node with the lowest value of g(n) + h(n). It turns out that

this strategy is more than just reasonable: provided that the heuristic

function h(n) satisfies certain conditions, A* search is both complete

and optimal. The optimality of A* is straightforward to analyze if it is

used with TREE‐SEARCH. In this case, A* is optimal if h(n) is an

admissible heuristic‐that is, provided that h(n) never overestimates the

cost to reach the goal. Admissible heuristics are by nature optimistic,

because they think the cost of solving the problem is less than it actually

is. Since g(n) is the exact cost to reach n, we has immediate consequence

that f(n) never overestimates the true cost of a solution through n.

7.1 A*‐ Search Algorithm

As we mentioned before, the A* algorithm to be discussed shortly

is a complete realization of the best first algorithm that takes into

account these issues in detail. The following definitions, however, are

required for representing the A* algorithm. These are in order.

Definition 3.1: A node is called open if the node has been generated and

the h'(x) has been applied over it but it has not been expanded yet.

Definition 3.2: A node is called closed if it has been expanded for

generating offsprings.

In order to measure the goodness of a node in A* algorithm, we require

two cost functions:

Heuristic cost.

Generation cost.

The heuristic cost measures the distance of the current node x

with respect to the goal and is denoted by h(x). The cost of generating a

node x, denoted by g(x), on the other hand measures the distance of

node x with respect to the starting node in the graph. The total cost

function at node x, denoted by f(x), is the sum of g(x) plus h(x). The

generation cost g(x) can be measured easily as we generate node x

through a few slate transitions. For instance, if node x was generated

from the starting node through m state transitions, the cost g(x) will be

proportional to m (or simply m). But how does one evaluate the h(x)? It

may be recollected that h(x) is the cost yet to be spent to reach the

goal from the current node x. Obviously, any cost we assign as h(x) is

through prediction. The predicted cost for h(x) is generally denoted by

h'(x). Consequently, the predicted total cost is denoted by f(x), where:

f '(x) = g(x) + h'(x).

7.2 A* Procedure

Here are the basic steps that are considered to implement the A*

procedure to solve problems in an intelligent manner:

1. Operations on states generate children of the state currently

under examination.

2. Each new state is checked to see whether it has occurred before

thereby preventing loops.

3. Each state n is given an f value equal to the sum of its depth in the

search space g(n) and a heuristic estimate of its distance to a goal

h(n).

4. States on open are sorted by their f examined or a goal.

5. As an implementation point, the algorithm’s can be improved

through maintenance of perhaps as heaps or leftist trees.

8‐ The Alpha‐Beta Search Algorithm

The idea for alpha‐beta search is simple: rather than searching the

entire space to the ply depth, alpha‐beta search proceeds in a depth‐

first fashion. Two values, called alpha and beta, are created during

the search. The alpha value associated with MAX nodes, can never

decrease, and the beta value associated with MIN nodes, can never

increase. Two rules for terminating search, based on alpha and beta

values, are:

1. Search can be stopped below any MIN node having a beta value

less than or equal to the alpha value of any of its MAX ancestors.

2. Search can be stopped below any MAX node having an alpha

value greater than or equal to the beta value of any of its MIN

node ancestors.

Alpha‐beta pruning thus expresses a relation between nodes at ply n

and nodes at ply n + 2 under which entire subtrees rooted at level n +

1 can be eliminated from consideration. Note that the resulting

backed‐up value is identical to the minimax result and the search

saving over minimax is considerable. With fortuitous ordering states

in the search space, alpha‐beta can effectively double the depth of

the search considered with a fixed space/time computer

commitment. If there is a particular unfortunate ordering, alpha‐beta

searches no more of the space than normal minimax; however, the

search is done in only one pass.

8.1 The Alpha‐Beta Cutoff Procedure (Tree Pruning)

c(n) = M(n) – O(n)

Where M(n) = number of my possible winning lines.

Now, we will discuss a new type of algorithm, which does not

require expansion of the entire space exhaustively. This algorithm is

referred to as alpha‐beta cutoff algorithm. In this algorithm, two extra

ply of movements are considered to select the current move from

alternatives. Alpha and beta denote two cutoff levels associated with

MAX and MIN nodes. As it is mentioned before the alpha value of MAX

node cannot decrease, whereas the beta value of the MIN nodes cannot

increase. But how can we compute the alpha and beta values? They are

the backed up values up to the root like MINIMAX. There are a few

interesting points that may be explored at this stage. Prior to the process

of computing MAX / MIN of the backed up values of the children, the

alpha‐beta cutoff algorithm estimates e(n) at' all fringe nodes n. Now,

the values are estimated following the MINIMAX algorithm. Now, to

prune the unnecessary paths below a node, check whether:

 The beta value of any MIN node below a MAX node is less than or

equal to its alpha value. If yes. prune that path below the MIN node.

 The alpha value of any MAX node below a MIN node exceeds the

beta value of the MIN node. if yes prune the nodes below the MAX

node.

Based on the above discussion, we now present the main steps in the α-β

search algorithm.

1. Create a new node, if it is the beginning move, c1seexpand the

existing tree by depth first manner. To make a decision about the

selection of a move at depth d, the tree should be expanded at least

up to a depth (d + 2).

2. Compute e(n) for all leave (fringe) nodes n in the tree.

3. Computer αmin (for max nodes) and βmax values (for min nodes) at the

ancestors of the fringe nodes by the following guidelines. Estimate

the minimum of the values (e or α) possessed by the children of a

MINIMIZER node N and assign it its βmax value. Similarly, estimate

the maximum of the values (e or β) possessed by the children of a

MAXIMIZER node N and assign it its αmin value.

4. If the MAXIMIZER nodes already possess αmin values, then their

current αmin value = Max (αmin value, αmin,); on tile other hand, if the

MANIMIZER nodes already possess βmax values, then their current

βmax value = MIN (βmax value, βmax).

5. If the estimated βmax value of a MINIMIZER node N is less than the

αmin value of its parent MAXIMIZER node N' then there is no need

to search below the node MINIMIZER node N. Similarly, if the αmin

value of a MAXIMIZER node N is more than the βmax value of its

parent node N then there is no need to search below node N.

1. Introduction to Expert Systems

Expert systems are computer programs that are constructed to do

the kinds of activities that human experts can do such as design,

compose, plan, diagnose, interpret, summarize, audit, give advice. The

work such a system is concerned with is typically a task from the worlds

of business or engineering/science or government.

Expert system programs are usually set up to operate in a manner

that will be perceived as intelligent: that is, as if there were a human

expert on the other side of the video terminal.

A characteristic body of programming techniques give these

programs their power. Expert systems generally use automated

reasoning and the so‐called weak methods, such as search or heuristics,

to do their work. These techniques are quite distinct from the well‐

articulated algorithms and crisp mathematical procedures more

traditional programming.

Figure (1) the vectors of expert system development

New Programming

Expert

Method for

As shown in Figure(1), the development of expert systems is based

on two distinct, yet complementary, vectors:

a. New programming technologies that allow us to deal with knowledge

and inference with ease.

b. New design and development methodologies that allow us to

effectively use these technologies to deal with complex problems.

The successful development of expert systems relies on a well‐

balanced approach to these two vectors.

2. Expert System Using

Here is a short nonexhaustive list of some of the things expert

systems have been used for:

 To approve loan applications, evaluate insurance risks, and

evaluate investment opportunities for the financial community.

 To help chemists find the proper sequence of reactions to create

new molecules.

 To configure the hardware and software in a computer to match

the unique arrangements specified by individual customers.

 To diagnose and locate faults in a telephone network from tests

and trouble reports.

 To identify and correct malfunctions in locomotives.

 To help geologists interpret the data from instrumentation at the

drill tip during oil well drilling.

 To help physicians diagnose and treat related groups of diseases,

such as infections of the blood or the different kinds of cancers.

 To help navies interpret hydrophone data from arrays of

microphones on the ocean floor that are used t\u the surveillance

of ships in the vicinity.

 To figure out a chemical compound's molecular structure from

experiments with mass spectral data and nuclear magnetic

resonance.

 To examine and summarize volumes of rapidly changing data that

are generated too last for human scrutiny, such as telemetry data

from landsat satellites.

Most of these applications could have been done in more traditional

ways as well as through an expert system, but in all these cases there

were advantages to casting them in the expert system mold.

In some cases, this strategy made the program more human

oriented. In others, it allowed the program to make better judgments.

In others, using an expert system made the program easier to

maintain and upgrade.

3. Expert Systems are Kind of AI ftrograms

Expert systems occupy a narrow but very important corner of the

entire programming establishment. As part of saying what they are, we

need to describe their place within the surrounding framework of

established programming systems.

Figure(2) shows the three programming styles that will most

concern us. Expert systems are part of a larger unit we might call AI

(artificial intelligence) programming. Procedural programming is what

everyone learns when they first begin to use BASIC or PASCAL or

FORTRAN. Procedural programming and A.I programming are quite

different in what they try to do and how they try to do it.

Figure(2) three kinds of programming

In traditional programming (procedural programming), the

computer has to be told in great detail exactly what to do and how to do

it. This style has been very successful for problems that are well defined.

They usually are found in data processing or in engineering or scientific

work.

AI programming sometimes seems to have been defined by

default, as anything that goes beyond what is easy to do in traditional

procedural programs, but there are common elements in most AI

programs. What characterizes these kinds of programs is that they deal

with complex problems that are often poorly understood, for which

there is no crisp algorithmic solution, and that can benefit from some

sort of symbolic reasoning.

Expert systems

programming

Procedural

There are substantial differences in the internal mechanisms of

the computer languages used for these two sorts of problems.

Procedural programming focuses on the use of the assignment

statement (" = " or ":‐") for moving data to and from fixed, prearranged,

named locations in memory. These named locations are the program

variables. It also depends on a characteristic group of control constructs

that tell the computer what to do. Control gets done by using

if‐then‐else goto

do‐while procedure calls

repeat‐until sequential execution (as default)

AI programs are usually written in languages like Lisp and Prolog.

Program variables in these languages have an ephemeral existence on

the stack of the underlying computer rather than in fixed memory

locations. Data manipulation is done through pattern matching and list

building. The list techniques are deceptively simple, but almost any data

structure can be built upon this foundation. Many examples of list

building will be seen later when we begin to use Prolog. AI programs also

use a different set of control constructs. They are :

procedure calls

sequential execution

recursion

4. Expert System, Development Cycle

The explanation mechanism allows the program to explain its

reasoning to the user, these explanations include justification for the

system's conclusions, explanation of why the system needs a particular

piece of data. Why questions and How questions. Figure (3) below shows

the exploratory cycle for rule based expert system.

Figure(3) The exploratory cycle for expert system

Begin

Design and construct prototype

Test / use system

Analyze and correct shortcoming

Are design

No

No Ready for

final

Yes Final

Define problems and goals

Working

memory

User

Interface

5. Expert System Architecture and Components

The architecture of the expert system consists of several components as

shown in figure (4) below:

Figure(4)Expert system architecture

5.1. User Interface

The user interacts with the expert system through a user interface

that make access more comfortable for the human and hides much of

the system complexity. The interface styles includes questions and

answers, menu‐driver, natural languages, or graphics interfaces.

Explanation

processor

Inference

engine

Knowledge

base

5.2. Explanation ftrocessor

The explanation part allows the program to explain its reasoning

to the user. These explanations include justifications for the system's

conclusion (HOW queries), explanation of why the system needs a

particular piece of data (WHY queries).

5.3. Knowledge Base

The heart of the expert system contains the problem solving

knowledge (which defined as an original collection of processed

information) of the particular applications, this knowledge is

represented in several ways such as if‐then rules form.

5..4 Inference Engine

The inference engine applies the knowledge to the solution of

actual problems. It s the interpreter for the knowledge base. The

inference engine performs the recognize act control cycle.

The inference engine consists of the following components:‐

1. Rule interpreter.

2. Scheduler

3. HOW process

4. WHY process

5. knowledge base interface.

5.5. Working Memory

It is a part of memory used for matching rules and calculation.

When the work is finished this memory will be raised.

6. Systems that Explain their Actions

An interface system that can explain its behavior on demand will seem

much more believable and intelligent to its users. In general, there are

two things a user might want to know about what the system is doing.

When the system asks for a piece of evidence, the user might want to

ask,

"Why do you want it?"

When the system states a conclusion, the user will frequently want to

ask,

"How did you arrive at that conclusion?"

This section explores simple mechanisms that accommodate both

kinds of questioning. HOW and WHY questions are different in several

rather obvious ways that affect how they can be handled in an

automatic reasoning program. There are certain natural places where

these questions are asked, and they are at opposite ends of the

inference tree. It is appropriate to let the user ask a WHY question when

the system is working with implications at the bottom of the tree; that

is: when it will be necessary to ask the user to supply data.

The system never needs to ask for additional information when it

is working in the upper parts of the tree. These nodes represent

conclusions that the system has figured out. rather than asked for. so a

WHY question is not pertinent.

To be able to make the conclusions at the top of the tree,

however, is the purpose for which all the reasoning is being done. The

system is trying to deduce information about these conclusions. It is

appropriate to ask a HOW question when the system reports the results

of its reasoning about such nodes.

There is also a difference in timing of the questions. WHY

questions will be asked early on and then at unpredictable points all

throughout the reasoning. The system asks for information when it

discovers that it needs it. The. time for the HOW questions usually

comes at the end when all the reasoning is complete and the system is

reporting its results.

References

1-www.uotiq.org/dep-cs
2-http://www-formal.stanford.edu/jmc/whatisai/

3-https://en.wikipedia.org/wiki/Artificial_intelligence

http://www.uotiq.org/dep
http://www-formal.stanford.edu/jmc/whatisai/
https://en.wikipedia.org/wiki/Artificial_intelligence

